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NONAXISYMMETRIC SOLUTION BIFURCATION AND THE 

STABILITY OF SHELLS OF REVOLUTION WITH A SINGULAR 

PERTURBATION 

V. V. Larchenko UDC 539.3:534.1 

We are examining the phenomenon of branching of the modes of equilibrium of a thin shell 
without buckling. Engineers are often faced with the problem of choosing a shell structure 
from the desired stable state when it has several equilibrium positions. In engineering 
practice, such requirements are typical, for example, in the use of shells as protective 
exploding membranes, in pneumatic automation systems containing shell elements, etc. The 
difficulties encountered in analyzing;this type of problem are directly related to one 
of the central problems in the membrane theory of shells - the existence of many stable 
modes for one value of the load parameter. 

Here we analyze the post-critical deformation of nearly perfect thin elastic shells 
under the influence of pressure 

p = q~ + p, p* = m i n n  {Pn}' 

where q is a small scalar parameter; q(~, 6) is a function characterizing the distribution 
of the perturbing pressure over the surface of the shell; {Pn} are eigenvalues. The 
dependence of the branching of a nonaxisymmetric mode of loss of stability of a conical shell 
on the form of the N-function was established. It was found that nonaxisymmetric bifurcation 
is accompanied either by an explosion or by buckling. The phenomenon of buckling is charac- 
terized by the fact that attainment of the bifurcation point does not exhaust the load- 
carrying capacity of the shell. If it is energetically favorable, the nonaxisymmetric mode is 
seen in the static state [i]. 
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The conclusion regarding the stability of the solution is generally based on analysis of 
the Liapunov indices. One thereby establishes the stability or instability of the solution 
relative to perturbations of the initial data. Here we study features of the deformation of 
shells with different perturbations of pressure over the shell surface. Such an approach 
not only makes sense from a physical standpoint, but it is the approach that must be taken 
in a number of cases. The necessity of its use stems on the one hand from the fact that it 
is very complicated to monitor the distribution of pressure perturbations over the shell 
surface in the setup of an experiment and, on the other hand, from the fact that qualitative 
studies of the effect of these perturbations significantly refine the mechanism of loss of 
shell stability. 

We will use U+ to designate the set of nonaxisymmetric modes of loss of stability for 
which branching is accompanied by an explosion. We will use U_ to designate the set of modes 
the bifurcation of which corresponds to the mechanical phenomenon of buckling. A numerical 
experiment was conducted to determine laws in the distribution of elements of U+ and U_ on 
the loading curve with the condition n(r) ~ i. It turned out that at high pressures, small 
nonaxisymmetric modes of a conical shell belong to one of four types of solutions differing 
in the method of loss of stability and the character of the dependence of the number of waves 
on the shell surface on the magnitude of the pressure. 

It must be remembered that repeated attempts have been made previously to find post- 
critical modes of equilibrium. However, none led to a positive result in the class of axi- 
symmetric solutions [2]. Here, we establish this property for solutions in the nonlinear theory 
of shells by virtue of two circumstances: 

i. The post-critical analysis was performed not only in the axisymmetric formulation, 
but also in regard to post-bifurcational nonaxisymmetric modes. 

2. Stable equilibrium modes branch appreciably only when the values of the geometric 
parameter of the shell correspond to the condition of singular perturbation by a single 
small parameter with a higher derivative. However, in this case a large number of nonaxi- 
symmetric modes generally belonging to the U+ set also branch [3]. Thus, for effective analysis, 
a method was developed to calculate all local modes of equilibrium on a specified segment of 
the loading curve and a computer program was written which automatically gives stable 
solutions. 

i. Vibrational-Asymptotic Analysis of Nearly Perfect Shells. We will examine the 
stability of a thin elastic shell of revolution within the framework of geometrically non- 
linear theory. The deformation of the shell contains nonlinear terms in a "quadratic" 
approximation 

= LI( ~ + (i/2)L~(~ + Ll~z, ~ ,  ( 1 . 1 )  

where L1, L2, and L l l  a r e  l i n e a r ,  q u a d r a t i c ,  and b i l i n e a r  o p e r a t o r s ;  V i s  t h e  d i s p l a c e m e n t  
v e c t o r  f u n c t i o n ;  z i s  a s m a l l  p e r t u r b a t i o n  o f  t h e  midd l e  s u r f a c e  o f  t h e  s h e l l .  

Le t  t h e  s h e l l  be de fo rmed  by a p r e s s u r e  p ( r )  = p + q ~ ( r ) ,  where p i s  a u n i f o r m  e x t e r n a l  
p r e s s u r e  e q u a l  t o  one o f  t h e  e i g e n v a l u e s  {Pn} o f  t h e  c o r r e s p o n d i n g  n o n l i n e a r  b o u n d a r y - v a l u e  
p rob lem l i n e a r i z e d  in  t h e  n e i g h b o r h o o d  o f  t h e  a x i s y m m e t r i c  s o l u t i o n ;  ~ ( r )  i s  a p o s i t i v e ,  
s u f f i c i e n t l y  smooth  f u n c t i o n  o f  t h e  r a d i u s  r ;  q i s  a s m a l l  s c a l a r  p a r a m e t e r ;  z i s  a p e r t u r b a -  
t i o n  o f  t h e  m i d d l e  s u r f a c e  o f  t h e  s h e l l  which  i s  c l o s e  t o  a n o n a x i s y m m e t r i c  mode o f  l o s s  o f  
s t a b i l i t y  V1, i . e . ,  z = ~V 1. 

We w i l l  assume t h a t  g i v e n  g e o m e t r i c  i m p e r f e c t i o n s  T o f  s u f f i c i e n t l y  s m a l l  a m p l i t u d e ,  
t h e  d i s p l a c e m e n t  V(a,  ~, p) can be expanded  i n t o  an a s y m p t o t i c  s e r i e s  in  i n t e g r a l  powers  o f  
t h e  p a r a m e t e r  g. The p a r a m e t e r  g c h a r a c t e r i z e s  t h e  a d d i t i o n a l  d i s p l a c e m e n t s  c a u s e d  by 
b r a n c h i n g  o f  t h e  n o n a x i s y m m e t r i c  mode o f  l o s s  o f  s t a b i l i t y  [ 1 ] :  

(1.2) 
V (~, ~, p) = V o (r, p) + "~ ~kV~ (~, p), it, ~} = ~. 

Here, V0(r, p) is the vector of the axisymmetric displacements of the main stress-strain state. 

We will study modes of loss of stability in a nonaxisymmetric formulation, using the 
principle of possible displacements. To do this, we insert (1.2) into (I.i) to obtain 
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h=O 

8h ~-- L I (Vh) "~- i ~ Lll (Wh-i' vi)' k = 0, l ,  . . .  

( 1 . 3 )  

The analogous series for the virtual strain corresponding to the virtual displacement 5V 
has the form 

~s = zL11 (V1, 6v) + 68 o + ~ ~sk, ( i~ 4) 

6eo = L1(6~ ~ Lll(Vo, 6 ~ ,  6s~ = L~(V~, 6V). 

It follows from power series (1.3) that the generalized stress o can also be expanded into 
a series in integral powers of ~. Meanwhile, the coefficients of this expansion o i satisfy 

the determining relation o i = F(gi), i = 0, i ..... Considering this, we perform a varia- 
tional analysis of the nonaxisymmetric mode of equlibrium in asymptotic form. We first note 
the following: the coefficient with $0 in the expression for variation of the energy func- 
tional is identically zero, since the corresponding boundary-value problem describing the 
main axisymmetric stress-strain state was obtained on the basis of the variational principle; 
if p = p, the coefficient H l with ~ is also equal to zero since the expression for it is an 
eigenvalue problem in variations. 

Having set 6V = V k in HI, we arrive at the identity 

~ {~o,pL~ (v~, Vk) + ~ [L~ (V~) + L~ (Vo, ~, rh)]} d~ = 0, ~ = ~, 2 ( 1 .5  ) 

which satisfies the eigenfunction V I and the k-th Koiter approximtion. Here, S is the middle 
surface; the subscript p means that the quantity was calculated at p = p. 

We will limit ourselves to displacements in the class of eigenfunctions. Then, with 
allowance for (1.3)-(1.5) and the Betti reciprocity theorem, we arrive at the asymptote form 
of the variational principle: 

~ = - ~ f [~oL~ ( v 0 +  ~ L ~  ( v .  vo) 1 ~ + . . . ,  ( 1 . 6 )  
k=l S 

= 3 f 
H 1 = j][(~oL2 (V1) + ff161] Us, ~2 -2 ~ filL2 (Yl) ds, 

8 8 

S 

~W t i~2  i = l  

(the terms of the form 0(~ m, zk), k ~ i, m + k ~ 2 have been discarded). 

Let 0 < T <T 0, T o <<i. We will use $m to designate the value of gat which the function 
q(g) reaches an extremum. We naturally assume that ~m(T) and q(T) ~ q(gm(T)) - are suffi- 
ciently smooth functions of the parameter T, while lim ~m(~)= 0, lim q(~)=0 In the plane 

�9 ~0 ~0 

(q, ~), the function q(T) is a line of extreme values. The sensitivity of shells to geo- 
metric imperfections can be determined from the location of the line q(z) in the plane. If 
the curve q(~) lies in the top half-plane, i.e., if q(T) > 0, z E (0, To) , then we will assume 
that the shell is insensitive to small geometric imperfections. If the curve q(z) is 
located in the lower half-plane, we place the shell in the class of shells sensitive to small 
geometric imperfections. It should be noted that the dominant terms of the asymptote of 
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the coordinates of the point (~m(T), q(gm )satisfythe necessary condition for existence of 
the extremum: 

~] ~-h-i _ {-] (1.7) k s ,  G - o ( G  , ~'),  ~, ~/> t. 
k = l  

Having set ~ = Sm in (i.6), we construct the solution of system (1.6-1.7) in the form of series 

= %&,., :  ( 1 . 8 )  

h ~ l  k=l 

where qk~ and T k are unknown coefficients. 

We expand o0(p), r and V0(p) into Taylor series in the neighborhood of the point p = 
p. We insert them into (1.7) and simplify the resulting expressions by means of (1.5). From 
here, we use the method of undetermined coefficients to obtain 

S 

( 1 . 9 )  

if Jq # 0 and qi~ ~ -2H2/Jn = 0. 

Numerical analysis of the equations of spherical and conical shells shows (see Part 3, 
for example) that there is a discrete set of values of the geometric parameters X for which 
the equality H 3 = 0 is valid at certain bifurcation points. Let H i = 0 for i = 2, 3, ..., 
k - 1 and H k # 0. Then the first nontrivial coefficient has the form qh-1.~=--kY~IH~ We 
obtain the following from comparison of the Koiter parameters qk-i,x for an imperfect shell 
with the corresponding parameter qk-i for an ideal shell [i, 4] 

q~.~ = (k + l)q h, k = t, 2 .... ( 1 . 1 0 )  

Thus,  i f  qk > 0, t h e n  qk ,x  > 0. I f  qk < 0, t h e n  qk ,x  < 0. C o n s e q u e n t l y ,  t h e  way in  which  an 
i m p e r f e c t  s h e l l  becomes u n s t a b l e  i s  d e t e r m i n e d  by t h e  s i g n  o f  t h e  K o i t e r  p a r a m e t e r  f o r  a 
p e r f e c t  s h e l l  w i t h  b o u n d a r y  c o n d i t i o n s ,  i n i t i a l  form o f  t h e  m i d d l e  s u r f a c e ,  g e o m e t r i c  dimen-  
s i o n s ,  and m a g n i t u d e  and d i s t r i b u t i o n  o f  p r e s s u r e  which  c o i n c i d e  w i t h  t h e  a n a l o g o u s  q u a n t i t i e s  
f o r  a s h e l l  h a v i n g  s m a l l  g e o m e t r i c  i m p e r f e c t i o n s .  

We i n s e r t  ( 1 . 8 )  i n t o  ( 1 . 6 )  and assume t h a t  $ = gm a t  t h e  extremum p o i n t  o f  t h e  c u r v e  q ( ~ ) .  
E q u a t i n g  t h e  t e rms  w i t h  i d e n t i c a l  powers  o f  Sm, we u se  ( 1 . 5 )  and ( 1 . 1 0 )  t o  o b t a i n  

qd ~., d h-:'~/kqh_ 1 "l:J~'l S O'IL1 (V1) d3, 

,9 

k k = 3 , 5  d = E ~ ,  ..- 
(1,11) 

Thus, the location of the curve q(x) in the plane (q, x) is determined by the function sign 
(qk-i). It was shown in [I] that the sign of the Koiter parameters is determined by the sign 
of the functional 

Jn = ff uc(r) n(t) tdt dr, ( 1 . 1 2 )  

where U c ( r )  i s  t h e  s econd  a p p r o x i m a t i o n  in  t h e K o i t e r  t h e o r y  f o r  t h e  a x i s y m m e t r i c  component  o f  
t h e  no rma l  d i s p l a c e m e n t .  I t  f o l l o w s  f rom t h i s  t h a t  f o r  an o s c i l l a t i n g  f u n c t i o n  U c ( r ) ,  t h e  
s i g n  o f  t h e  f u n c t i o n a l  Jq and ,  t h u s ,  t h e  s e n s i t i v i t y  o f  t h e  s h e l l  t o  s m a l l  g e o m e t r i c  i m p e r f e c -  
t i o n s  depends  on t h e  q - f u n c t i o n .  The l a t t e r  i s  d e t e r m i n e d  by t h e  c o n d i t i o n s  o f  t h e  e x p e r i m e n t :  
t h e  d e s i g n  f e a t u r e s  o f  t h e  e x p e r i m e n t a l  u n i t ,  t h e  method o f  l o a d i n g ,  e t c .  

The c o m p l e t e d  s t u d y  makes i t  p o s s i b l e  t o  d i s t i n g u i s h  a c l a s s  o f  i m p e r f e c t  s h e l l s  which  
a r e  s e n s i t i v e  t o  p r e s s u r e  p e r t u r b a t i o n s .  Le t  a c e r t a i n  s h e l l  have  an o s c i l l a t i n g  f u n c t i o n  u c ( r )  
a t  t h e  p o i n t  p ~ {Pn}" Then in  a c c o r d a n c e  w i t h  ( 1 . 1 2 ) ,  ( 1 . 9 ) ,  and ( 1 . 8 ) ,  by c h a n g i n g  t h e  d i s -  
t r i b u t i o n  o f  t h e  p e r t u r b i n g  p r e s s u r e  on t h e  s h e l l  s u r f a c e  we can change  t h e  s i g n  o f  t h e  
p a r a m e t e r  qe ,~  and ,  t h u s ,  t h e  n e i g h b o r h o o d  in  which  t h e  s m a l l  mode o f  e q u i l i b r i u m  e x i s t s .  
S i n c e  t h e r e  i s  a f u l l y  d e t e r m i n e d  c o r r e s p o n d e n c e  be tween  t h e  m e c h a n i c a l  phenomenon o f  l o s s  o f  
s t a b i l i t y  o f  a s h e l l  u n d e r  a c o n s e r v a t i v e  l o a d  and t h e  p r o p e r t y  o f  b i f u r c a t i o n  o f  t h e  s o l u t i o n ,  
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then we can plac e she!!s for which bifurcation of equilibrium is dependent on the q-function 
in the class of shells sensitive to external pressure perturbations. We should note that 
Eq. (i.ii) was obtained in [4, 5] with k = 3 and ~(r) = I. 

2. Initial Post-Critical Deformation of Shells of Revolution. We will use p = h/a7 to 
designate the relative thickness of the shell, where a is the radius in plan, ~2 = 12(1 - v2), 
v is the Poisson's ratio, and h is the shell thickness. If we make the dimensionless transi- 
tion by means of the formulas @R = Epr w R = aw, PR = EPP2/~, rR = ar (E is the Young's 
modulus), then the equations of the finite displacements in mixed form are 

-- h r ] L (w,  ~ )  t 

�9 A t = - - ' T L (  w, P 0 ' ( 2 . 1 )  

L(w,  @) = w " H @  ~ O " H w  - -  2 I w I ~ ,  H 0  = r - l [0  ' + r- l ( )"] ,  

I 0  = r-X[O "r-x - -  0 " ] ,  0 '  = O/ar, O" = aloe, 
, a )  r ~ a g ,  w = w "  + v H w  = O, H O = - - I O = 0 ;  

b) r ~ 0 ~ ,  w =  w ' = 0 ,  H O = - - I O = 0 ;  

c) r ~ 09, w = w' = 0, ~ "  - -  v H ~  = 0, r  - -  H ~  + 2(i + v) (~""  + ~ " )  + 

v (~  - -  0 "  + ~ '  - -  0 " '  + 2 r  = O, 

where A~( )=r-If[taRS1( ) ' ] ' + a ( R r r ) - ~ (  )"];R~ and R r are the principal radii of curvature of the 
middle surface of the shell; (@, r) are polar coordinates. Equations (2.1) describe the 
formation of an elastic shallow shell with a middle plane which is identical with the 
coordinate plane. Since the Kirchhoff-Love hypotheses were used in the derivation of Eqs. 
(2.1), we assume that ~ << i. 

We will use the Poincare-Liapunov method [6, 7] to analyze nonaxisymmetric bifurcation 
from the axis3mametric state (w0(r), ~0(r)). To do this, Eq. (2.1) and the boundary condi- 
tions are written in displacements. Their linearization in the neighborhood of zero yields 
an eigenvalue problem and its conjugate problem. Comparison of these problems establishes 
the relationship between the eigenfunctions of the problems. Using these functions, we 
regularize the perturbation problem. After some transformations are performed, the solution 
of the perturbation problem is approximated by a segment of a Poincare-Liapunov series 

d h 

x ~ E E xifqJ,  x = ( ~ -  ~o, ~ -  %), 
i -~ l  j = l  

w h i c h  r e d u c e s  t h e  p r o b l e m  t o  a r e c u r r i n g  s e q u e n c e  o f  b o u n d a r y - v a l u e  p r o b l e m s :  

t h e  n o n l i n e a r  p r o b l e m  o f  a x i s y r a m e t r i c  d e f o r m a t i o n  o f  t h e  s h e l l  

( i )  [ ] 
! 

~ A u - - r O v = r  - I  uv -~ pntdt A()~--~ r -1 , ~ r r - .  , 

�9 0 

t 
~tA v + rOu = - -  -~ r - l u  ~, 0 = a/R~,,  {u,  v}  = {w,  cl)}'~,: 

r =  0, t, u ' - } - v u ~ = v = O ,  u = v = 0 ,  u = v ' - - v v = O ;  

( 2 . 2 )  

the eigenvalue problem 

~ A 2 + r - h , ( ) " §  - -A - -u ' I I - - r -~u (y ]  +%11 
A~ + .+'g + r -~u ( )" ~ A~ q~, t/ = 0, 

x~l)wn = ~2)( I )  n = 0 ,  i = 1 ,  2, r ~ Off; 

(2 .3 )  

problems of post-critical deformation 

= 

T L (  w~' ='") II 
(2.4) 
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1 2 ~  

~'{1)Wzo='~ia(2)020=O, i = 1 , 2 ,  r~Of~. S,~<)=.!'J" ru'n( )drd% w = O ;  
0 o 

w~S 0 lt'O1 
(2.5) 

(B is a 2 x 2 matrix from (2.3)). 

We expand the function N(r, ~ ) into a Fourier series. We introduce notation q = 
qnNn(r), where Nn(r) are coefficients of the expansion. Using the Fredholm alternative and 
the explicit properties of boundary-value problems (2.2)-(2.5) for the coefficients Xij , it 
can be shown that the approximate branching equation has the form 

Lotq n + Ln~qo -Jr Lso~ ~ + . . . .  O, 

L o l = - ~  TIn(t) o n(t) tdt, L n = -  uc(O l"lo(i')rdr 
0 0 t-O 

1 

L30 = vcg 2 "-~ ueg 1 + "~  r (O2nh 1 - -  h2nh2 } rdr; 

o 

dr, 

( 2 . 6 )  

{W$o, (920 } = {O2n (r), f2n (r)} cos 2 (nq) ~- an) + u c (t) dr, v c (t) d t ,  

{w n, On} = {COn(r), In(r)} sin (ncp + an), 

( 2 . 7 )  

where {m2n(r), ~n(r)},{uc(r),vc(r)} are vector functions of the solution of the inhomogeneous 

boundary-value problems obtained (2.4) by means of (2.7); gl, g=, hl, h2 are the inhomo- 
geneous parts of the corresponding boundary-value problems; a n is the initial phase for 
nonaxisyn~metric harmonics. It follows from the branching equation that if qn # 0, q0 ~ 0, 
then the number of branched modes of equilibrium depends on the ratio of the parameters qn 
and q0. This result was obtained by applying Newton's diagramming technique to Eq. (2.6) 
[81.  

Let the perturbing pressure be axisymmetric and L30 ~ O, L11 # O. Then one nonaxi- 
symmetric mode having a positive amplitude $ branches off in the neighborhood of the critical 
pressure. The mechanical quantities for this mode (diplacements, generalized stresses, 
strains) can be represented in the form of series in powers of q0 which are multiples of 
i/2. If sign(Lz0L11) < O, then the load-carrying capacity of the shell is not exhausted upon 
attainment of the critical pressure, while the nonaxisymmetric mode is observed experimentally 
when it is energetically favorable. The process of loss of stability occurs in the form of 
bucklin$. If sign(L30L11) > O, then bifurcation is accompained by an explosion. Another 
Poincare-Liapunov expansion occurs with the following limitations on the branching equation: 
L30 = O, L11 ~ O, Ls0 # 0 (the coefficient L40 is equal to zero). In this case, the 
mechanical quantities can be represented in the form of a series in powers of q0 which are 
multiples of 1/4. Buckling of the shell occurs as before, but it is necessary to replace 

L30by Ls0. 

Let Lll # 0, L30 # 0, L01 # 0. Then we have the equation of the curve qn= 2L11qo]/~/3Lol, 

g = -L30/Lll dividing the plane (q0, qn) into regions each of which contains a constant num- 
ber of equilibrium modes. We will use q+ and q- to designate the branches of this curve. 

�9 �9 . , - , 

Uslng Newton's dlagrammlng technique forng > 0,nwe can show that there are three nonaxl- 
+ and q~. One symmetric modes in the right semicircle of the coordinate origin between qn 

+ and below q~. If qn > q~, then equilibrium mode branches off in the regions above qn 

> 0 when LIIL01 > O. If qn < qn, then ~ > 0 when LIIL01 < O. For g < O, then the above- 

described regions in the plane (q0, qn) will be mirror reflections relative to the qo axis. 
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It follows from the above that the number of small nonaxisymmetric modes depends on the 
sign of the Koiter parameter and the sign of the quantity (LIIL01). Thus, the shell will be 
sensitive to the distribution of the perturbing pressure if u c or ~n are oscillating 
functions. 

We will use Z to designate dim(Ker B) - the dimension of the null subspace of the opera- 
tor B at the point p = Pn" If s > i, then to analyze the equilibrium modes it is necessary 
to use the multidimensional variant of the Poincare-Liapunov method. We set s = max ~,p It 
is established below that if p > p*, where p* = minn{Pn}, but it is less than a certain p+, 
then Z+ = 2. If p+ i P < P-, then s = 4. In the last case, the dimension s may take 
values of 0, I, 3, and 4. We should point out several general laws governing the change in 
dim(Ker B). The value of s does not decrease with an increase in p. The value of s can 
only change bytwo. Finally, the value of s may increase as ~ approaches zero. 

3. Initial Post-Critical Deformation of a Conical Shell. Shown below are results 
of numerical integration of the equations of a conical shell (2.1c) loaded by a uniform 
external pressure. The shell material has a Poisson's ration v = 0.34. 

Figure 1 shows the development of Uc(r) at ~ = 14.22 and different n. The numbers of 
the curves correspond to the eigenvalues {Pn}" Henceforth, the shell geometry is charac- 
terized by the parameter ~, equal to ~e/~, where 8 is the half-opening of the shell. 

It is apparent that Uc(r) is an oscillating function. Thus, nonaxisymmetric bifurca- 
tion of the mode of equilibrium of a thin conical shell and, thus, the mechanism of loss of 
stability depend on the perturbing pressure in the neighborhood of the spectrum points. 
Moreover, according to (i.ii), the sensitivity of this shell to geometric imperfections 
depends on the ~-function. This conclusion is sufficiently general in character, since it is 
also valid for a spherical shell [i]. The same conclusion can be reached for a cylindrical 
shell with a fixed end and under compression in the axial direction. This follows from Eq. 
(i.ii) and the numerical results in [9]. The data in Fig. 1 also indicates that to determine 
the mechanism of loss of stability (whether or not the shell will explode), it is necessary 
to specify a corresponding perturbation ~ for each n. Meanwhile, in problems such as these, 
it is important primarily to monitor pressure perturbations near the edge. This effect is 
particularly strong for a thin conical shell, with the nonaxisymmetric mode being charac- 
terized by a large number of waves (see the curves with n = i0, 14, for example). 

Figure 2 shows the integral function n(Pn) for ~ = 14.22, where n is equal to the number 
of waves in the circumferential direction for a small nonaxisymmetric mode. Here, point 1 
corresponds to nonaxisymmetric modes for which bifurcation under uniform external loading 
is accompanied by an explosion, while point 2 corresponds to buckling of the conical shell. 

Analysis of the mechanical phenomena corresponding to branching of thesolutionwas 
accomplished by the following scheme. We numerically determined the values of the functions 
of branching equation (2.6). Using the Newton diagram and the Poiseuille theorem, we 
established the neighborhood of existence of the minor mode of equilibrium Sn and studied 
the potential energy H n in the neighborhood of Cn" If p > Pn and the second variation 

5~nn ~ -- 4~L30 ( 3 . 1 )  

i s  g r e a t e r  t h a n  z e r o ,  t h e n  b i f u r c a t i o n  o f  t h e  s o l u t i o n  c o r r e s p o n d s  t o  b u c k l i n g .  I f  t h e  
i n e q u a l i t y  52fin < 0 i s  v a l i d  a t  p < Pn,  t h e  b i f u r c a t i o n  o f  t h e  s o l u t i o n  i s  a c c o m p a n i e d  by 
e x p l o s i o n  o f  t h e  s h e l l .  Hav ing  a p p l i e d  t h e  H a m i l t o n - O s t r o g o d  p r i n c i p l e  in  t h e  Landau 
a p p r o x i m a t i o n  [ 1 0 ] ,  we r e d u c e  t h e  d y n a m i c a l  e q u a t i o n  f o r  Sn t o  t h e  fo rm 

d~n 
dt 2 - - o L 1 1 ~ , ~ L 3 o ~ '  o=  p--pn~ 

It can be determined from this that branching of the shell occurs in an oscillatory regime in 
the first case. In the case, there is severe loss of stability, and the nonaxisymmetric 
perturbation increases exponentially during the loss of stability. 

It is evident from Fig. 2 that P7 = minn{Pn} is a simple point of the spectrum. At 
0.392 < p < 0.804, the function n(Pn) has two branches. These branches describe rapidly and 
slowly oscillating waves. At p > 0.804, the function has four branches. Two of the branches 
increase with an increase in pressure, while two decrease. It is for this reason that two types 
of loss of stability, when p E [0.804; 1.44], are possible over the loading curve w(p). If 
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the spectrum point belongs to the branches Bp*, then buckling occurs. If the spectrum 
point belongs to the branches B'p ~ then an explosion occurs. Thus, alternation of the 
points of the spectrum on the curve w(p) which belong to the branches Bp* and B'p ~ leads to 
a large variety of nonaxisymmetrical modes of loss of stability. For the shell being 
examined, the pressure p = 0.804 is doubly degenerate. Thus, in the neighborhood of this 
point, the initial post-critical deformation is very sensitive to geometric imperfections 
[ii]. 

Numerical integration of the equations of a conical shell in a broad range of I re- 
vealed several laws governing nonaxisymmetricmodes of loss of stability. When certain 
and p the functionn(pn) acquires "new" branches (such as in the neighborhood of the point p0), 
then an especially large number of nonaxisymmetric modes with a negative Koiter parameter 
g appear on the loading curve. These shells are distinguished by the fact that the presence 
of geometric imperfections having the same rotationgroup as the corresponding eigenfunction 
reduce the value of the p coordinate of the bifurcation point. In contrast to this, the bi- 
furcation points (points 2 in Fig. 2) are shifted to the right in the presence of such geometric 
imperfections. Detailed analysis of each bifurcation point by the Poincar~-Liapunov 
method showed that at h = 14.22, 35 modes having a positive amplitude $ branch off of the axi- 
symmetric mode if the perturbing pressure is axisymmetric. 

A distinctive feature of the nonaxisymmetric bifurcation of a conical shell with large 
X is that the range of pressure in which only the axisymmetric mode exists is significantly 
smaller than the range of pressure in which nonaxis)m~metric equilibrium modes exist. 

There are several exceptions in nonaxisym~etric bifurcation. There is no regularity in 
the alternation of spectrum points on the branch p*c. Figure 3 shows graphs for Ls0. The 
numbers of the curves correspond to the eigenvalues {Pn}" It is apparent that for one I the 
functional L30 can take different values with a change in n and, in accordance with (3.1), 
both the sign of 62Hn and the mechanism of loss of stability change. In particular, at 

x = 14.22, Ls0 < 0 for n = 5 and Ls0 > 0 for n = 6. This explains the change in the character 
of bifurcation in the transition from n = 5 to n = 6 on the branch p*c (see Fig. 2). It 
should be noted that L~0 changes sign either in the neighborhood of points of continuity (such 
as in the neighborhood of the point D) or in the neighborhood of second-order points of 
discontinuity. In the first case, in order to study the initial post-critical deformation of 
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a thin shell, it is necessary to retain terms of the order O({m),m > 3, in Eq. (2.6). In 
the second case, it is usually necessary to change the algorithm for numerical integration 
of the boundary-value problems, approximating the solution with Chebyshev polynomials [12]. 
For the problem being discussed, this property is manifest not only in the eigenvalue 
problem - as occurs for the Navier-Stokes equations - but also in analysis of the leading 
coefficients of the branching equation. Points of the second type were seen in [5] in the 
local loading of shells. 

In conclusion, we should note that no qualitatively new features in the mechanism of loss 
of stability were discovered from study of the post-critical deformation of shells with 
hinged-stationary and sliding-fixed bearing contours. 
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